It was Freddie Fu who recruited MaCalus V. Hogan to Pitt Med in 2013, recognizing his talents in surgery and research. Hogan now will continue the standard of excellence that Fu helped create here in orthopaedic care.

Appointed in September as the David Silver Professor and chair of the Department of Orthopaedic Surgery at Pitt and chair of orthopaedic surgery at UPMC, Hogan will build on the department’s tradition of groundbreaking research as well as its identity as a destination for clinical training that has produced leaders in orthopaedics at medical centers throughout the world.

“Dr. Hogan’s commitment to building a diverse environment at Pitt/UPMC and growing the academic excellence in musculoskeletal research made him the ideal next chair,” says Anantha Shekhar, an MD, PhD, senior vice chancellor for the health sciences and John and Gertrude Petersen Dean, School of Medicine.

Hogan told the Pittsburgh Post-Gazette that after injuring his ankle playing football in high school, a surgeon planted the seed that he should consider a career in orthopaedics. Hogan shadowed that surgeon and is now a prominent foot and ankle expert and consultant to a number of collegiate teams, as well as the Pittsburgh Ballet Theatre.

Hogan, an MD, MBA (BUS ’19), most recently served as professor of orthopaedic surgery at Pitt, with secondary appointments in bioengineering, clinical and translational science, and business. He was also residency director and vice chair of education for orthopaedic surgery at UPMC, chief of its Division of Foot and Ankle Surgery and medical director of outcomes with the UPMC Wolff Center for quality, safety and innovation.

Hogan is the recipient of a number of awards, including the American Academy of Orthopaedic Surgeons’ Influencers Award and two American Orthopaedic Foot & Ankle Society J. Leonard Goldner Awards for Best Basic Science Research. In 2018, he was selected as one of Modern Healthcare’s Top 15 Up and Comers as an emerging national leader in health care. —Staff reports
Kasper named nursing dean

Christine E. Kasper, a PhD and RN, who served the past four years as dean of the University of New Mexico’s College of Nursing, has been named the new dean of Pitt’s School of Nursing. On Jan. 1, 2023, Kasper will replace Jacqueline Dunbar-Jacob, a PhD and RN, dean and Distinguished Service Professor of Nursing.

Before joining UNM, Kasper served as a senior nurse executive in the U.S. Department of Veterans Affairs, Office of Nursing Services. In that post, she advised the chief nursing officer on academics, research and policy and was a professor in the Daniel K. Inouye Graduate School of Nursing at Uniformed Services University of the Health Sciences in Bethesda, Maryland.

Kasper is the editor of the Annual Review of Nursing Research and was the founding editor of Biological Research for Nursing. She was elected a fellow of the American Academy of Nurses in 1994, a fellow of the American College of Sports Medicine in 1995 and to the International Nurse Researcher Hall of Fame, Sigma Theta Tau International, in 2015.

She has more than 200 national and international peer-reviewed and invited publications, books and presentations to her credit. —Staff reports

PITT fix

A how-to guide for patching cell leaks

A leaky lysosome can spell trouble inside a cell, but usually the repair process is quick and easy.

In healthy people, cells undergo needed maintenance without a hitch. But disease and aging can put this process in jeopardy.

Now, Pitt Med researchers have created a how-to guide for the fix, describing for the first time the pathway that cells take to mend the leaks. Published in the journal Nature in September, their findings could help scientists understand and treat age-related diseases like Alzheimer’s.

Considered the cell’s recycling system, lysosomes contain digestive enzymes that break down molecular waste. A membrane around the lysosome normally keeps those enzymes from damaging other parts of the cell, but leaks do sometimes appear.

To see how the repair process springs into action, Jay Xiaojun Tan, a PhD and the study’s lead author, experimentally damaged lysosomes in lab-grown cells. He found that an enzyme quickly accumulated on the injured organelles and generated high levels of a signaling molecule that Tan compared to a “red flag.”

“It tells the cell, ‘Hey, we have a problem here,’” says Tan, assistant professor of cell biology and member of the Pitt/UPMC Aging Institute. “This alert system then recruits another group of proteins, called ORPs.” The ORPs tether the lysosome to the cell’s endoplasmic reticulum, which allows lipids and proteins to reach and patch the leaks. The researchers named the sequence of steps the “PITT pathway” (PITT, in this case, stands for phosphoinositide-initiated membrane tethering and lipid transport.)

When age or disease causes major damage or compromises the pathway, the leaks can mount and lead to further problems. Leaks of misfolded proteins (specifically, tau fibrils), for example, spur the progression of Alzheimer’s disease.

Tan collaborated on the study with senior author Toren Finkel, an MD, PhD, director of the Aging Institute and Distinguished Professor of Medicine. In the future, the researchers plan to investigate whether manipulating this pathway can protect mice from developing Alzheimer’s. —Staff reports